New imaging technology captures movement of quantum particles with unprecedented resolution

New imaging technology captures movement of quantum particles with unprecedented resolution

by Tel Aviv University, Phys.org

Excitons—electrically neutral quasiparticles—have extraordinary properties. They exist only in semiconducting and insulating materials and can be easily accessed in two-dimensional (2D) materials just a few atoms thick, such as carbon and molybdenite. When these 2D materials are combined, they exhibit quantum properties that neither material possesses on its own.

A new Tel Aviv University study explores the generation and propagation of excitons in 2D materials within an unprecedented small time frame and at an extraordinarily high spatial resolution. The research was led by Prof. Haim Suchowski and Dr. Michael Mrejen of TAU’s Raymond & Beverly Sackler Faculty of Exact Sciences and published in Science Advances on February 1.

Quantum mechanics is a fundamental theory in physics that describes nature at the smallest scales of energy. “Our new imaging technology captures the movement of excitons in a short time frame and at nanometer scale,” Dr. Mrejen says. “This tool can be extremely useful for peeking into a material’s response at the very first moments light has affected it.”

Read the full article here…

Leave a Reply